An asymptotic double commutant theorem for $C\sp{\ast} $-algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A double commutant theorem for Murray-von Neumann algebras.

Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), wh...

متن کامل

Prime Ideal Theorem for Double Boolean Algebras

Double Boolean algebras are algebras (D,u,t, , ,⊥,>) of type (2, 2, 1, 1, 0, 0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under u (resp. t). A filter F is called primary if F 6= ∅ and for all x ∈ D we have x ∈ F or x ∈ F . In this note we prove t...

متن کامل

Commutant Algebras in Representations of Lie Algebras of Vector Fields

In this paper, we give an explicit description of the commutant algebras for vector fields Lie algebras Wn in their representations on Wm×n, m 6 n, which arises from the tensor product Nm CoindF n, for the basis field F of characteristic 0. The result is some analogue of Weyl’s classical reciprocity.

متن کامل

Commutant lifting theorem for n-tuples of contractions

We show that the commutant lifting theorem for n-tuples of commuting contractions with regular dilations fails to be true. A positive answer is given for operators which ”double intertwine” given n-tuples of contractions. The commutant lifting theorem is one of the most important results of the Sz. Nagy—Foias dilation theory. It is usually stated in the following way: Theorem. Let T and T ′ be ...

متن کامل

Plünnecke’s Theorem for Asymptotic Densities

Plünnecke proved that if B ⊆ N is a basis of order h > 1, i.e., σ(hB) = 1, then σ(A + B) σ(A)1− 1 h , where A is an arbitrary subset of N and σ represents Shnirel’man density. In this paper we explore whether σ can be replaced by other asymptotic densities. We show that Plünnecke’s inequality above is true if σ is replaced by lower asymptotic density d or by upper Banach density BD but not by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1978

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1978-0506620-0